Kinetics of the interaction between actin, ADP, and cardiac myosin-S1.
نویسندگان
چکیده
The rate and equilibrium constants for the formation and dissociation of the bovine ventricular (BV) actomyosin-S1-ADP have been measured by stopped flow light scattering. A comparison of the rate constants obtained here with those for rabbit skeletal (RS) actomyosin-S1 indicates that there are large differences in several of the rate and equilibrium constants. 1) The rate constant of ADP dissociation from BV actomyosin-S1 is 65 +/- 10 s-1 at 15 degrees C compared to a lower limit of 500 s-1 previously observed for RS actomyosin-S1. 2) The association constant for ADP binding to actomyosin-S1 is increased from 6 X 10(3) M-1 for RS to 1.5 X 10(5) M-1 for BV at 15 degrees C. The following rate and equilibrium constants differ by less than a factor of 2 between RS and BV actomyosin-S1: 1) the second order rate constant for the dissociation of actomyosin-S1 by MgATP; 2) the second order rate constant of myosin-S1 and myosin-S1-ADP binding to actin; and 3) the association constant of myosin-S1 to actin. The rate constant for ADP dissociation from BV actomyosin-S1 is at least 10-fold greater than the Vmax for the steady state ATPase and therefore cannot be the rate-limiting step of ATP hydrolysis. However, at physiological temperature, 38 degrees C, and ATP concentration, greater than 3 mM, ADP dissociation is sufficiently slow to limit the rate of myosin-S1 dissociation from actin by ATP and is likely to be the rate-limiting step of cross-bridge dissociation in muscle. Moreover, the rate constant of ADP dissociation is sufficiently slow to be the molecular step which limits the unloaded shortening velocity in cardiac muscle.
منابع مشابه
Ca2+ and ionic strength dependencies of S1-ADP binding to actin-tropomyosin-troponin: regulatory implications.
Skeletal and cardiac muscle contraction are inhibited by the actin-associated complex of tropomyosin-troponin. Binding of Ca(2+) to troponin or binding of ATP-free myosin to actin reverses this inhibition. Ca(2+) and ATP-free myosin stabilize different tropomyosin-actin structural arrangements. The position of tropomyosin on actin affects the binding of ATP-free myosin to actin but does not gre...
متن کاملModulation of Thin Filament Activation of Myosin ATP Hydrolysis by N-Terminal Domains of Cardiac Myosin Binding Protein-C
We have used enzyme kinetics to investigate the molecular mechanism by which the N-terminal domains of human and mouse cardiac MyBP-C (C0C1, C1C2, and C0C2) affect the activation of myosin ATP hydrolysis by F-actin and by native porcine thin filaments. N-Terminal domains of cMyBP-C inhibit the activation of myosin-S1 ATPase by F-actin. However, mouse and human C1C2 and C0C2 produce biphasic act...
متن کاملTwo Drosophila Myosin Transducer Mutants with Distinct Cardiomyopathies Have Divergent ADP and Actin Affinities*
Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that...
متن کاملUse of stable analogs of myosin ATPase intermediates for kinetic studies of the "weak" binding of myosin heads to F-actin.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of ...
متن کاملPhosphate and ADP differently inhibit coordinated smooth muscle myosin groups.
Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-depende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 259 8 شماره
صفحات -
تاریخ انتشار 1984